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Isomorphism theorems of fuzzy hypermodules

Morteza Norouzi and Violeta Leoreanu-Fotea

Abstract

In this paper we define and study a new class of subfuzzy hypermod-
ules of a fuzzy hypermodule that we call normal subfuzzy hypermodules.
The connection between hypermodules and fuzzy hypermodules can be
used as a tool for proving results in fuzzy hypermodules. In this manner
we analyse three isomorphism theorems for fuzzy hypermodules.

1 Introduction

Fuzzy hyperstructures is an application of fuzzy set theory ([29]) to algebra
which was initiated by Rosenfeld, who defined fuzzy groups ([25]). A large
number of publications on this topic, as well as the recent book Fuzzy algebraic
hyperstructures ([17]), prove that this represents a significant area of research.

There are three directions of research in the study of fuzzy hyperstructures.
The first one studies crisp hyperoperations, defined through fuzzy sets and was
initiated by Corsini [7, 8]. Some interesting papers in this direction are [10]
and [11]. The second approach consists in defining a fuzzy subset on crisp
hyperstructures and was introduced by Zahedi et al.[30]. Some interesting
papers in this direction are [9], [15], [16], [31], and [32]. Finally, the third
group of papers on fuzzy hyperstructures associates a fuzzy set with each
pair of elements of a set. This idea was introduced by Corsini and Tofan
in [9] and then, Sen, Ameri and Chowdhury introduced and analyzed fuzzy
semihypergroups in [26]. This idea was extended to fuzzy hyperrings and
fuzzy hypermodules by Davvaz and Leoreanu-Fotea in [20] and [21]. The fuzzy
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transposition hypergroups and fuzzy topological hypergroupoids were studied
by Chowdhury in [5], and Cristea and Hoskova in [13] and fuzzy hyperalgebras
in [1] by Ameri and Nozari.

In [21], Leoreanu-Fotea studied a connection between hypermodules and
fuzzy hypermodules by p-cuts. This connection represents a tool for proving
some results in fuzzy hypermodules in our paper. In order to do this, we
define the notion of normal subfuzzy hypermodules of fuzzy hypermodules
and investigate three isomorphism theorems for fuzzy hypermodules.

2 Preliminaries

2.1 Hypermodules

Let H be a nonempty set and let P∗(H) be the set of all nonempty subsets of
H. A hyperoperation on H is a map “ ◦ ” : H ×H −→ P∗(H), and the couple
(H, ◦) is called a hypergroupoid. If x ∈ H and A,B ∈ P∗(H), then we denote
A ◦B =

⋃
a∈A,b∈B a ◦ b and A ◦ x = A ◦ {x}. A hypergroupoid (H, ◦) is called

a semihypergroup if for all x, y, z of H, we have (x ◦ y) ◦ z = x ◦ (y ◦ z), which
means that

⋃
u∈x◦y u ◦ z =

⋃
v∈y◦z x ◦ v. We say that a semihypergroup (H, ◦)

is a hypergroup if for all x ∈ H, x◦H = H ◦x = H. A subhypergroup (K, ◦) of
(H, ◦) is a nonempty set K, such that for all k ∈ K, we have k◦K = K◦k = K.
A commutative hypergroup (H, ◦) is called a canonical hypergroup, if

(1) there exists a unique e ∈ H, such that for all x ∈ H, x ◦ e = {x};

(2) for all x ∈ H, there exists a unique x−1 ∈ H, such that e ∈ x ◦ x−1;

(3) if x ∈ y ◦ z, then y ∈ x ◦ z−1 and z ∈ y−1 ◦ x, for all x, y, z ∈ H.

Definition 2.1. The triple (R,], ◦) is a hyperring, if

(1) (R,]) is a commutative hypergroup;

(2) (R, ◦) is a semihypergroup;

(3) “ ◦ ” is distributive over “ ] ”.

Definition 2.2. Let (R,], ◦) be a hyperring. A nonempty set M , endowed
with a hyperoperation “ + ”, and an external hyperoperation “ · ” is called a
left hypermodule over (R,], ◦) if the following conditions hold:

(1) (M,+) is a commutative hypergroup;

(2) · : R×M −→ P∗(M) is such that for all a, b of M and r, s of R we have

(i) r · (a+ b) = (r · a) + (r · b);
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(ii) (r ] s) · a = (r · a) + (s · a);

(iii) (r ◦ s) · a = r · (s · a).

A nonempty subset N of M is called a subhypermodule of a hypermodule
(M,+, ·), if (N,+) is a subhypergroup of (M,+) and R ·N ∈ P∗(N).

Let (M,+, ·) be a hypermodule over a hyperring (R,], ◦) such that (M,+)
and (R,]) are canonical hypergroups. A subhypermodule N of M is said to
be normal, if x + N − x ⊆ N , for all x ∈ M . According to [4] and [14], we
recall the following results for normal subhypermodules:

Corollary 2.3. Let N be a normal subhypermodule of M . Then

(1) x+N = y +N , for all y ∈ x+N .

(2) (x+N) + (y +N) = x+ y +N , for all x, y ∈M .

(3) N ∩K is a normal subhypermodule of K, for all subhypermodule K of
M .

(4) N is a normal subhypermodule of N + K, for all subhypermodule K of
M .

(5) x+ y +N = z +N , for all x, y ∈M and z ∈ x+ y.

Let (M1,+1, ·1) and (M2,+2, ·2) be two hypermodules over a hyperring R.
The map f : M1 −→M2 is called a (strong) homomorphism of hypermodules
if for all x, y ∈M1 and r ∈ R, we have

f(x+1 y) ⊆ f(x) +2 f(y) and f(r ·1 x) ⊆ r ·2 f(x).(
f(x+1 y) = f(x) +2 f(y) and f(r ·1 x) = r ·2 f(x)

)
.

2.2 Fuzzy hypermodules

Let S be a nonempty set. F∗(S) denotes the set of all nonzero fuzzy subsets
of S. A fuzzy hyperoperation on S is a map “ ◦ ” : S × S −→ F∗(S), which
associates a nonzero fuzzy subset a ◦ b with each pair (a, b) of element of
S × S. The couple (S, ◦) is called a fuzzy hypergroupoid. We say that (S, ◦) is
commutative if for all a, b ∈ S, we have a ◦ b = b ◦ a.

A fuzzy hypergroupoid (S, ◦) is called a fuzzy semihypergroup if for all
a, b, c ∈ S, we have a ◦ (b ◦ c) = (a ◦ b) ◦ c, where for all µ ∈ F∗(S),

(a ◦ µ)(r) =
∨
t∈S

((a ◦ t)(r) ∧ µ(t)) and (µ ◦ a)(r) =
∨
t∈S

(µ(t) ∧ (t ◦ a)(r))
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for all r ∈ S. If A is a nonempty subset of S, then for all t ∈ S,

(x ◦A)(t) =
∨
a∈A

(x ◦ a)(t) and (A ◦ x)(t) =
∨
a∈A

(a ◦ x)(t)

Let µ and λ be two nonzero fuzzy subsets of fuzzy hypergroupoid (S, ◦).
Then for all t ∈ S

(µ ◦ λ)(t) =
∨
p,q∈S

(µ(p) ∧ (p ◦ q)(t) ∧ λ(q)).

A fuzzy semihypergroup (S, ◦) is called a fuzzy hypergroup if for all a ∈ S,
a ◦ S = S ◦ a = χ

S
.

In a fuzzy hypergroup (S, ◦), an element e ∈ S is called an identity (a
scalar identity), if for all x ∈ S,

(e ◦ x)(x) > 0 and (x ◦ e)(x) > 0.

If for y ∈ S we have (e ◦ x)(y) > 0 and (x ◦ e)(y) > 0, then x = y. Also, an
element a′ ∈ S is called an inverse of a ∈ S, if (a◦a′)(e) > 0 and (a′◦a)(e) > 0.

Now, we recall that a fuzzy hypergroup (S, ◦) is said to be canonical if

(1) is commutative;

(2) there exists an identity element ”e” in S;

(3) for all a ∈ S there exists a unique inverse a′ ∈ S;

(4) for a, x, y ∈ S, (a ◦ x)(y) > 0 implies that (a′ ◦ y)(x) > 0.

Leoreanu-Fotea and Davvaz in [20] and Leoreanu-Fotea in [21] introduced
the notions of a fuzzy hyperring and a fuzzy hypermodule, as follows:

Definition 2.4. A triple (R,�,�) is a fuzzy hyperring if:

(1) (R,�) is a commutative fuzzy hypergroup;

(2) (R,�) is a fuzzy semihypergroup;

(3) “� ” is distributive over “� ”, i.e., for all a, b, c of R

a� (b� c) = (a� b)� (a� c) and (a� b)� c = (a� c)� (b� c).

Definition 2.5. Let (R,�,�) be a fuzzy hyperring. A nonempty set M , en-
dowed with a fuzzy hyperoperation “⊕”, and a fuzzy external hyperoperation
“�” is called a left fuzzy hypermodule over (R,�,�) if the following conditions
hold:
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(1) (M,⊕) is a commutative fuzzy hypergroup;

(2) � : R ×M −→ F∗(M) is a map that satisfies the following conditions,
for all m,n ∈M and r, s ∈ R:

(a) r � (m⊕ n) = (r �m)⊕ (r � n);

(b) (r � s)�m = (r �m)⊕ (s�m);

(c) (r � s)�m = r � (s�m).

Example 2.6. ([21]) Let (M,+, ·) be a module over a ring (R,+, ·) without
unity. Define the following fuzzy hyperoperations for all a, b ∈M and r, s ∈ R:

r�s = χ{r+s}, r�s = χ{rs}, a⊕b = χ{a+b}, (r�a)(t) =

{
1/2, if t = ra
0, otherwise

Then (M,⊕,�) is a fuzzy hypermodule over the fuzzy hyperring (R,�,�).

A nonempty subset N of M is called a subfuzzy hypermodule if for all
x, y ∈ N and r ∈ R, we have:

(1) (x⊕ y)(t) > 0 implies that t ∈ N ;

(2) x⊕N = χ
N

;

(3) (r � x)(t) > 0 implies that t ∈ N .

We recall that if µ1, µ2 are fuzzy subsets on M , then we say that µ1 is
smaller than µ2 and we denote µ1 6 µ2 if and only if for all x ∈ M , we have
µ1(x) ≤ µ2(x). Also, let f : M1 −→M2 be a map and µ be a fuzzy subset on
M1. Then we define f(µ) : M2 −→ [0, 1], as follows:

(f(µ))(t) =
∨

r∈f−1(t)

µ(r), if f−1(t) 6= ∅

otherwise we consider (f(µ))(t) = 0.

Definition 2.7. Let (M1,⊕1,�1) and (M2,⊕2,�2) be two fuzzy hypermod-
ules over a fuzzy hyperringR. A map f : M1 −→M2 is called a homomorphism
of fuzzy hypermodules, if for all x, y ∈M1 and r ∈ R, we have

f(x⊕1 y) 6 f(x)⊕2 f(y) and f(r �1 x) 6 r �2 f(x).
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2.3 Connection between hypermodules and fuzzy hypermodules

First, we recall a connection between fuzzy hypermodules and hypermodules,
using the p-cuts of fuzzy sets for p ∈ [0, 1]. By [21], a structure (M,⊕,�) is a
fuzzy hypermodule over a fuzzy hyperring (R,�,�) if and only if (M,⊕p,�p)
is a hypermodule over the hyperring (R,�p,�p), for all p ∈ [0, 1], where

x⊕p y = {t ∈M | (x⊕ y)(t) ≥ p} , r �p s = {u ∈ R | (r � s)(u) ≥ p}
r �p x = {z ∈M | (r � x)(z) ≥ p} , r �p s = {v ∈ R | (r � s)(v) ≥ p}

for all x, y ∈ M and r, s ∈ R. Also, in [21], it is shown that for a nonempty
subset S and for all a ∈ S we have the following equivalence:

a⊕ S = χ
S
⇐⇒ ∀p ∈ [0, 1], a⊕p S = S.

Therefore, for a subfuzzy hypermodule N of a fuzzy hypermodule (M,⊕,�),
we have a⊕N = χa⊕pN , for all a ∈ N .

Also, according to [21] and [20], with every fuzzy hypermodule (M,⊕,�)
over a fuzzy hyperring (R,�,�), we can associate a hypermodule structure
(M,+, ·) over a hyperring (R,], ◦), where

x+ y = {t ∈M | (x⊕ y)(t) > 0} , r ] s = {u ∈ R | (r � s)(u) > 0}
r · x = {z ∈M | (r � x)(z) > 0} , r ◦ s = {v ∈ R | (r � s)(v) > 0}

for all x, y ∈M and r, s ∈ R. Hence, for every subfuzzy hypermodule N of M
and a ∈ N , we have a⊕N = χa+N .

Moreover, let (M1,⊕1,�1) and (M2,⊕2,�2) be fuzzy hypermodules and
(M1,+1, ·1) and (M2,+2, ·2) the associated hypermodules. By [21], if a map
f : M1 −→M2 is a homomorphism of fuzzy hypermodules, then f is a homo-
morphism of hypermodules, too.

3 Normal subfuzzy hypermodules

In this section, we define the concept of normal subfuzzy hypermodules for
fuzzy hypermodules and obtain some basic results about them. Using the
connection with normal subhypermodules of the associated hypermodules, we
obtain three isomorphism theorems for fuzzy hypermodules.

In what follows, (M,⊕,�) is a fuzzy hypermodule over a fuzzy hyperring
(R,�,�), where (M,⊕) is a canonical fuzzy hypergroup with a scalar identity
0, which belongs to all subfuzzy hypermodules of M .

Definition 3.1. A subfuzzy hypermodule N of (M,⊕,�) is said to be normal,
if

x⊕N 	 x 6 χ
N

for all x ∈M .
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Example 3.2. Consider the fuzzy hypermodule (M,⊕,�) defined in Example
2.6. Let N be a submodule of the module (M,+, ·). Then N is a subfuzzy
hypermodule of (M,⊕,�). Also, for all x, t ∈M

(x⊕N 	 x)(t) =
∨
z∈M

(
(x⊕N)(z) ∧ (z 	 x)(t)

)
=
∨
z∈M

( ∨
n∈N

χ{x+n}(z) ∧ χ{z−x}(t)
)

=

{
1, if z = x+ n, t = z − x
0, otherwise

=

{
1, if t ∈ N
0, otherwise

= χN (t)

Therefore, N is a normal subfuzzy hypermodule of M .

Example 3.3. Consider a module (M,+, ·) over a ring (R,+, ·) and define
the following fuzzy hyperoperations for all a, b ∈M and r, s ∈ R:

r � s = χ{r,s}, r � s = χ{rs}, a⊕ b = χ{a,b}, r � a = χ{ra}.

Then (M,⊕,�) is a fuzzy hypermodule over the fuzzy hyperring (R,�,�), by
[21]. Let N be a subfuzzy hypermodule of the fuzzy hypermodule M . Then for
all x, t ∈M we have

(x⊕N 	 x)(t) =
∨
z∈M

(
(x⊕N)(z) ∧ (z 	 x)(t)

)
=
∨
z∈M

( ∨
n∈N

χ{x,n}(z) ∧ χ{z,−x}(t)
)

=

{
1, if z ∈ {x, n}, t ∈ {z,−x}
0, otherwise

≥
{

1, if t ∈ N
0, otherwise

= χN (t)

This implies that N is not a normal subfuzzy hypermodule of M in general.

Corollary 3.4. N is a normal subfuzzy hypermodule of fuzzy hypermodule
(M,⊕,�) if and only if N is a normal subhypermodule of the hypermodule
(M,⊕p,�p), for all p ∈ (0, 1].
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Proof. Let N be a normal subfuzzy hypermodule of the fuzzy hypermodule
(M,⊕,�) and t ∈ x ⊕p N 	p x for x ∈ M and p ∈ (0, 1]. Then there exists
a ∈ x ⊕p N such that t ∈ a 	p x. Hence, (x ⊕N)(a) ≥ p and (a 	 x)(t) ≥ p.
Thus, since N is normal, it follows that

χ
N

(t) ≥ (x⊕N 	 x)(t) =
∨
a∈M

(
(x⊕N)(a) ∧ (a	 x)(t)

)
≥ p.

Then t ∈ N and so x⊕p N 	p x ⊆ N .
Conversely, let N be a normal subhypermodule of (M,⊕p,�p) for all p ∈ (0, 1].
Also, let (x⊕N 	x)(t) ≥ q for x ∈M and q ∈ (0, 1]. Then there exists a ∈M
such that (x⊕N)(a) ≥ q and (a	x)(t) ≥ q. This implies that t ∈ x⊕qN	q x.
SinceN is normal, then t ∈ N and so χ

N
(t) = 1 ≥ q. Thus, x⊕N	x 6 χ

N
.

Corollary 3.5. Let N be a normal subfuzzy hypermodule of (M,⊕,�). Then,
for all x, y, z ∈M , we have

(1) (x⊕N)⊕ (y ⊕N) = (x⊕ y)⊕N .

(2) (x⊕N)(y) = 1 implies that x⊕N = y ⊕N .

(3) if (x⊕ y)(z) = 1, then x⊕ y ⊕N = z ⊕N .

Proof. Consider the hypermodule (M,⊕u,�u) for all u ∈ (0, 1]. By Corollary
3.4, N is a normal subhypermodule of (M,⊕u,�u) for all u ∈ (0, 1].
(1) Let ((x ⊕ y) ⊕ N)(t) ≥ u for t ∈ M and u ∈ (0, 1]. It implies that
t ∈ x⊕u y ⊕u N = (x⊕u N)⊕u (y ⊕u N). Then, there exist p ∈ x⊕u N and
q ∈ y ⊕u N such that t ∈ p⊕u q. Hence, (x⊕N)(p) ≥ u, (y ⊕N)(q) ≥ u and
(p⊕ q)(t) ≥ u, and so(

(x⊕N)⊕ (y ⊕N)
)
(t) =

∨
p,q∈M

(
(x⊕N)(p) ∧ (p	 q)(t) ∧ (y ⊕N)(q)

)
≥ u.

Thus,
(
(x ⊕ y) ⊕ N

)
(t) ≤

(
(x ⊕ N) ⊕ (y ⊕ N)

)
(t) for all t ∈ M . Now, let(

(x ⊕ N) ⊕ (y ⊕ N)
)
(t) ≥ u for u ∈ (0, 1] and t ∈ M . Since N is a subfuzzy

hypermodule and (M,⊕) is commutative, it follows that(
(x⊕ y)⊕ χ

N

)
(t) = (x⊕ y ⊕N ⊕N)(t) =

(
(x⊕N)⊕ (y ⊕N)

)
(t) ≥ u.

Then, there exist p, q ∈ M such that (x ⊕ y)(p) ≥ u, (p ⊕ q)(t) ≥ u and
χ

N
(q) ≥ u. This implies that t ∈ x⊕u y ⊕u N . Hence, for d ∈ x⊕u y we have

t ∈ d⊕u N . Thus, (x⊕ y)(d) ≥ u and (d⊕N)(t) ≥ u. Then

((x⊕ y)⊕N)(t) =
∨
d∈M

(
(x⊕ y)(d) ∧ (d⊕N)(t)

)
≥ u.
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Now, consider the associated hypermodule (M,+, ·). Then we have,(
(x⊕N)⊕ (y ⊕N)

)
(t) = 0⇔ t 6∈ (x+N) + (y +N) = x+ y +N

⇔
(
(x⊕ y)⊕N

)
(t) = 0.

This complete the proof of (1).
(2) Let (x ⊕ N)(y) = 1. Then, (x ⊕ N)(y) ≥ u for all u ∈ (0, 1]. Hence, we
have y ∈ x⊕uN and so x⊕uN = y⊕uN , since N is a normal subhypermodule
of (M,⊕u,�u). Thus, x⊕N = χx⊕uN = χy⊕uN = y ⊕N .
(3) Since N is a normal subhypermodule of the hypermodule (M,⊕u,�u), we
have x⊕u y ⊕u N = z ⊕u N for all z ∈ x⊕u y. Now, let (x⊕ y)(z) = 1. Then
z ∈ x⊕u y, for all u ∈ (0, 1]. Hence, for all t ∈M ,

(z ⊕N)(t) ≥ u =⇒ t ∈ z ⊕u N = x⊕u y ⊕u N
=⇒ ∃q ∈ x⊕u y ; t ∈ q ⊕u N
=⇒ (x⊕ y)(q) ≥ u ; (q ⊕N)(t) ≥ u
=⇒ ((x⊕ y)⊕N)(t) ≥ u.

Similarly, ((x⊕ y)⊕N)(t) ≥ u implies that (z ⊕N)(t) ≥ u, for all u ∈ (0, 1].
Consider the associated hypermodule (M,+, ·). Clearly, (x⊕y)(z) = 1 implies
that z ∈ x+ y. Hence, we have

(z ⊕N)(t) = 0⇔ t 6∈ z +N = x+ y +N ⇔ (x⊕ y ⊕N)(t) = 0.

Therefore, x⊕ y ⊕N = z ⊕N , for all (x⊕ y)(z) = 1.

Corollary 3.6. Let N and L be subfuzzy hypermodules of M such that L is
normal in M . Then

(1) N ∩ L is a normal subfuzzy hypermodule of N .

(2) L is a normal subfuzzy hypermodule of

N ⊕ L = {x ∈M | ∃a ∈ N, b ∈ L; (a⊕ b)(x) = 1}.

Proof. By Corollary 3.4, N and L are subhypermodules of the hypermodule
(M,⊕u,�u) for all u ∈ (0, 1] such that L is a normal subhypermodule of M .
Thus, N ∩ L is a normal subhypermodule of N , by Corollary 2.3. Now, let
(x⊕(N∩L)	x)(t) ≥ u for t ∈M . Then, for p ∈M , we have (x⊕(N∩L))(p) ≥
u and (p	 x)(t) ≥ u. It implies that t ∈ x⊕u (N ∩ L)	u x. Since N ∩ L is a
normal subhypermodule, then t ∈ N ∩ L and so χ

N∩L(t) = 1 ≥ u. Therefore,
x⊕ (N ∩ L)	 x 6 χ

N∩L .
(2) Similarly, since L is a normal subhypermodule of N +L, it follows that L
is a normal subfuzzy hypermodule of N ⊕ L.
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Let N be a normal subfuzzy hypermodule of M . For all x, y ∈ M , we
define the following relation on M :

xN∗y ⇐⇒ ∃t ∈M ;
(
(x	 y) ∧ χ

N

)
(t) 6= 0.

Lemma 3.7. N∗ is an equivalence relation on the fuzzy hypermodule M .

Proof. Consider the associated hypermodule (M,+, ·). Since 0 ∈ (x− x) ∩N
for all x ∈ M , it follows that (x 	 x)(0) > 0 and χ

N
(0) > 0. Thus, xN∗x,

for all x ∈ M and so N∗ is reflexive. Now, let xN∗y, for x, y ∈ M . Then
there exists t ∈ M such that (x 	 y)(t) > 0 and t ∈ N . Thus, t ∈ x − y
and t ∈ N . Since (M,+) is canonical, we have −t ∈ y − x and −t ∈ N , and
so (y 	 x)(−t) > 0 and χ

N
(−t) > 0. This implies that yN∗x, that is N∗ is

symmetric. Moreover, if xN∗y and yN∗z for x, y, z ∈ M , then there exist
a, b ∈ N such that (x 	 y)(a) > 0 and (y 	 z)(b) > 0. Since N is a normal
subhypermodule of the associated hypermodule (M,+, ·) such that (N,+) is
canonical, it follows that

x− z ⊆ a+ y + b− y = y + (a+ b)− y ⊆ y +N − y ⊆ N

Hence, there exists t ∈ x−z such that t ∈ N . Thus, we have
(
(x	z)∧χ

N

)
(t) >

0. Then xN∗z and so N∗ is transitive.

Let N∗[x] be the equivalence class of element x ∈M . Then

Lemma 3.8. If N is a normal subfuzzy hypermodule of M , then x⊕N = χ
N∗[x]

for all x ∈M .

Proof. Consider the hypermodule (M,⊕p,�p) for all p ∈ [0, 1]. Set

N∗p [x] = {t ∈M | (t	p x) ∩N 6= ∅}

for all p ∈ (0, 1]. Then, there exists p ∈ (0, 1] such that N∗[x] = N∗p [x]. Also,
by [4], for a normal subhypermodule N of the hypermodule (M,⊕p,�p), we
have x ⊕p N = N∗p [x] for all x ∈ M . Therefore, χN∗[x] = χN∗p [x] = χx⊕pN =
x⊕N .

Lemma 3.9. Let N be a normal subfuzzy hypermodule of M . Then, for all
r ∈ R and x ∈M we have (r � x)⊕N = (r � x)⊕ χ

N
.

Proof. Let r ∈ R, t, x ∈ M , u ∈ [0, 1] and
(
(r � x) ⊕N

)
(t) ≥ u. Then there

exists p ∈ M such that (r � x)(p) ≥ u and (p ⊕N)(t) ≥ u. Since, (N,⊕u) is
a canonical subhypergroup of (M,⊕u), then

t ∈ p⊕u N ⊆ (r �u x)⊕u N = (r �u x)⊕u N ⊕u 0 ⊆ (r �u x)⊕u N ⊕u N.
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It follows that
(
(r � x) ⊕ χ

N

)
(t) =

(
(r � x) ⊕ N ⊕ N

)
(t) ≥ u, since N is a

subfuzzy hypermodule. Now, let
(
(r�x)⊕χ

N

)
(t) ≥ u. Then, for p, q ∈M we

have (r�x)(p) ≥ u, (p⊕q)(t) ≥ u and χ
N

(q) ≥ u. Thus, p ∈ r�ux, t ∈ p⊕u q
and q ∈ N . This implies that t ∈ (r �u x)⊕u N and so

(
(r � x)⊕N

)
(t) ≥ u.

Therefore, (r � x)⊕N = (r � x)⊕ χ
N

.

According to [24], if (M,⊕,�) is a fuzzy hypermodule and N is a subfuzzy
hypermodule of M , then M/N = {x ⊕ N | x ∈ M} is a fuzzy hypermodule
over a fuzzy hyperring (R,�,�), where the fuzzy hyperoperations ⊕

N
and �

N

are defined as follows:(
(x⊕N)⊕N (y ⊕N)

)
(t⊕N) =

(
(x⊕ y)⊕ χ

N

)
(t)

and
(
r �N (x⊕N)

)
(t⊕N) =

(
(r � x)⊕ χ

N

)
(t)

for all r ∈ R and x⊕N, y ⊕N, t⊕N ∈M/N . Therefore, we obtain the next
theorem:

Theorem 3.10. Let (M,⊕,�) be a fuzzy hypermodule over a fuzzy hyperring
(R,�,�) and N be a normal subfuzzy hypermodule of M . Then

M/N = [M : N∗] = {x⊕N = χN∗[x] | x ∈M}

is a fuzzy hypermodule over R, where:(
χN∗[x] ⊕N χN∗[y]

)
(χN∗[t]) =

(
x⊕ y ⊕N

)
(t)

and
(
r �N χN∗[x]

)
(χN∗[t]) =

(
(r � x)⊕N

)
(t).

Proof. It follows by Lemma 3.8, Lemma 3.9 and Corollary 3.5.

4 Isomorphism theorems of fuzzy hypermodules

We investigate isomorphism theorems for fuzzy hypermodules by using normal
subfuzzy hypermodules.

Let (M1,⊕1,�1) and (M2,⊕2,�2) be fuzzy hypermodules over a fuzzy
hyperring (R,�,�). We say that a fuzzy homomorphism f : M1 −→ M2 is
strong, if

f(x⊕1 y) = f(x)⊕2 f(y) and f(r �1 x) = r �2 f(x),

for all x, y ∈ M1 and r ∈ R set ker f = {x ∈ M1 | f(x) = 0M2
}.Then ker f is

a subfuzzy hypermodule of M1, but in general it is not normal in M1.
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Theorem 4.1. (The First Isomorphism Theorem) Let f : M1 −→ M2 be a
strong fuzzy homomorphism with kernel K which is a normal subfuzzy hyper-
module of M1. Then [M1 : K∗] ∼= Imf .

Proof. Define ϕ : [M1 : K∗] −→ Imf by ϕ(x⊕K) = f(x) for all x ∈M1. Let
x⊕K = y⊕K. Then xK∗y and so there exists z ∈M1 such that (x	y)(z) > 0
and χK(z) > 0. Consider the associated hypermodule (M1,+1, ·1) and the
associated homomorphism f . Hence, we have z ∈ x − y and f(z) = 0M2

.
Thus 0M2

= f(z) ∈ f(x − y) = f(x) − f(y). Then, f(x) = f(y) and so ϕ is
well-defined. It is clear that ϕ is onto. Now, let ϕ(x⊕K) = ϕ(y ⊕K). Then
f(x) = f(y) and so 0M2 ∈ f(x − y). Hence, there exists z ∈ x − y such that
z ∈ K. Thus (x 	 y)(z) > 0 and χK(z) > 0 and so there exists t ∈ M1 such
that

(
(x	 y) ∧ χK)(t) 6= 0. Therefore, xK∗y and

x⊕K = χK∗[x] = χK∗[y] = y ⊕K.

Then ϕ is one to one. Moreover, for x, y ∈M1 and t ∈ Imf ,

ϕ
(
χK∗[x] ⊕K χK∗[y]

)
(t) =

∨
z⊕K∈ϕ−1(t)

(
(x⊕K)⊕K (y ⊕K)

)
(z ⊕K)

=
∨

z∈f−1(t)

(x⊕ y ⊕K)(z)

=
∨

z∈f−1(t)

(
(x⊕K)⊕ (y ⊕K)

)
(z)

=
∨

z∈f−1(t)

(χK∗[x] ⊕ χK∗[y])(z)

=
∨

z∈f−1(t)

( ∨
p,q∈M1

(
χK∗[x](p) ∧ χK∗[y](q) ∧ (p⊕ q)(z)

))
=

∨
z∈f−1(t)

(p⊕ q)(z)
(
∃p, q ∈M1; f(x) = f(p), f(y) = f(q)

)
= f(p⊕ q)(t) =

(
f(p)⊕ f(q)

)
(t) =

(
f(x)⊕ f(y)

)
(t)

=
(
ϕ(χK∗[x])⊕ ϕ(χK∗[y])

)
(t)

Similarly, we can show that ϕ
(
r �K χK∗[x]

)
= r � ϕ(χK∗[x]), for all r ∈ R.

Consequently, ϕ is an isomorphism and the proof is complete.

Theorem 4.2. (The Second Isomorphism Theorem) If N and K are subfuzzy
hypermodules of (M,⊕,�) such that K is normal in M , then [N : (N∩K)∗] ∼=
[N ⊕K : K∗].

Proof. By Corollary 3.6, K is a normal subfuzzy hypermodule ofN⊕K. Define
the map ϕ : N −→ [N ⊕K : K∗] by ϕ(x) = x⊕K. Clearly, ϕ is well-defined.
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Now, let y ⊕K ∈ [N ⊕K : K∗] such that y ∈ N ⊕K. Hence, for n ∈ N and
k ∈ K we have (n⊕k)(y) = 1. Consider the associated hypermodule (M,+, ·).
Since K is a normal subhypermodule of the associated hypermodule of M , by
Corollary 3.4, we obtain

y ⊕K = χy+K = χn+k+K = χn+K = n⊕K = ϕ(n).

Hence, ϕ is onto. Also,

kerϕ = {x ∈ N | ϕ(x) = 0⊕K} = {x ∈ N | χK∗[x] = χK∗[0]}
= {x ∈ N | xK∗0}
= {x ∈ N | x ∈ K}
= N ∩K,

which is a normal subfuzzy hypermodule of N , by Corollary 3.6. Moreover,
let x, y ∈ N , t⊕K ∈ [N ⊕K : K∗] and u ∈ (0, 1] and let ϕ(x⊕ y)(t⊕K) ≥ u.
Hence, there exists r ⊕ K = t ⊕ K such that (x ⊕ y)(r) ≥ u. Consider the
associated hypermodule (M,⊕u,�u). By Corollary 2.3, we obtain

t ∈ t⊕u 0 ⊆ t⊕u K = r ⊕u K = x⊕u y ⊕u K.

It follows that
(
ϕ(x) ⊕K ϕ(y)

)
(t ⊕ K) =

(
(x ⊕ K) ⊕K (y ⊕ K)

)
(t ⊕ K) =

(x ⊕ y ⊕ K)(t) ≥ u. Similarly,
(
ϕ(x) ⊕K ϕ(y)

)
(t ⊕ K) ≥ u implies that

ϕ(x⊕y)(t⊕K) ≥ u. Also, we can obtain that ϕ(x⊕y)(t⊕K) = 0 if and only
if
(
ϕ(x)⊕K ϕ(y)

)
(t⊕K) = 0. Then, ϕ(x⊕ y) = ϕ(x)⊕K ϕ(y) and similarly

we have ϕ(r � x) = r �K ϕ(x), for all r ∈ R. Hence, ϕ is a strong fuzzy
homomorphism. According to Theorem 4.1, the proof is complete.

Theorem 4.3. (The Third Isomorphism Theorem) Let N and K be normal
subfuzzy hypermodules of M such that N ⊆ K. Then [K : N∗] is a normal
subfuzzy hypermodule of [M : N∗] and [[M : N∗] : [K : N∗]] ∼= [M : K∗].

Proof. Notice that [K : N∗] is a normal subfuzzy hypermodule of [M : N∗].
Define α : [M : N∗] −→ [M : K∗] by α(x ⊕ N) = x ⊕K for all x ∈ M . Let
x⊕N = y ⊕N . Hence, for all u ∈ [0, 1] we have x⊕u N = y ⊕u N . Then

x⊕K = χx⊕uK = χx⊕uN⊕uK = χy⊕uN⊕uK = χy⊕uK = y ⊕K,

and so α is well-defined. Moreover, α is onto and kerα = [K : N∗]. Now, let
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x, y, t ∈M and u ∈ (0, 1]. Then

α(χK∗[x] ⊕N χK∗[y])(χK∗[t]) ≥ u =⇒
∨

r⊕N∈α−1(t⊕K)

(
(x⊕N)⊕N (y ⊕N)

)
(r ⊕N) ≥ u

=⇒
∨

r⊕K=t⊕K

(x⊕ y ⊕N)(r) ≥ u

=⇒ ∃r ⊕K = t⊕K; r ∈ x⊕u y ⊕u N
=⇒ ∃r ⊕K = t⊕K; r ∈ x⊕u y ⊕u K (N ⊆ K)

=⇒ ∃r ⊕K = t⊕K; (x⊕ y ⊕K)(r) ≥ u
=⇒

(
(x⊕K)⊕K (y ⊕K)

)
(r ⊕K) ≥ u

=⇒
(
(x⊕K)⊕K (y ⊕K)

)
(t⊕K) ≥ u

=⇒
(
α(χK∗[x])⊕K α(χK∗[y])

)
(χK∗[t]) ≥ u.

Also,
(
α(χK∗[x])⊕Kα(χK∗[y])

)
(χK∗[t]) ≥ u implies that t ∈ x⊕uy⊕uK and so

there exists r ∈ x⊕uy such that r⊕uK = t⊕uK. Since K is normal, it follows
that r⊕uN = x⊕u y⊕uN . Also, we have r ∈ r⊕u 0 ⊆ r⊕uN = x⊕u y⊕uN .
Then (x⊕ y ⊕N)(r) ≥ u. Thus

α
(
χK∗[x] ⊕N χK∗[y]

)
(χK∗[t]) =

∨
r⊕N∈α−1(t⊕K)

(
(x⊕N)⊕N (y ⊕N)

)
(r ⊕N)

=
∨

r⊕K=t⊕K
(x⊕ y ⊕N)(r) ≥ u.

Moreover, α(χK∗[x] ⊕N χK∗[y])(χK∗[t]) = 0 if and only if(
α(χK∗[x])⊕K α(χK∗[y])

)
(χK∗[t]) = 0.

Also, we have α
(
r �N χK∗[x]

)
= r �K α

(
χK∗[x]

)
. Therefore, α is a strong

fuzzy homomorphism. By Theorem 4.1, we obtain

[[M : N∗] : [K : N∗]] ∼= [M : K∗]

5 Conclusion and future work

Using a connection between hyperstructures and fuzzy hyperstructures, pre-
sented in [21], we extend the context of researches in fuzzy algebraic hyper-
structures, in particular the study of fuzzy hypermodules and their quotients.
This study can be continued for other classes of fuzzy hyperstructures.
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